Multiple interactions of a DNA-binding protein in vivo. III. Phage T4 gene-32 mutations differentially affect insertion-type recombination and membrane properties.
نویسندگان
چکیده
We have investigated in in vivo roles of T4 gene-32 protein in recombination. We have studied the effects of gene-32 mutations under conditions that allow normal DNA replication and are permissive for progeny production. Under these conditions, certain gene-32 mutations specifically reduce insertion-type (short-interval) recombination but none affect crossover-type (long-interval) recombination (see Figure 5). Heterozygote frequencies in all gene-32 mutants are similar to or higher than in a gene-32+ background and are not correlated with recombination deficiencies. "Recombination-deficient" alleles are dominant or codominant over the "recombination-proficient" gene 32 mutation tsL171. This explains apparent discrepancies between a gene-32 map deduced from two-factor crosses and the map derived from three-factor crosses. We have also found that the "recombination proficient" mutation tsL171 and it homdoalleles suppress the characteristic plaque morphology of rII mutants. Under restrictive conditions, tsL171 is partially suppressed by rII mutations, which allow the use of host ligase in recombination. Our present and previous results are discussed in terms of current recombination models. We conclude that gene-32 protein functions in recombination by forming a complex with DNA, with recombination enzymes and with membrane components. Since gene-32 protein interacts with many components of this recombination complex, gene-32 mutations may differentially affect various recombination steps.
منابع مشابه
A new epistasis group for the repair of DNA damage in bacteriophage T4: replication repair.
The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repai...
متن کاملBacteriophage T 7 gene 2 . 5 protein : An essential protein for DNA replication ( DNA binding protein / recombination / T 7 DNA
The product of gene 2.5 of bacteriophage T7, a single-stranded DNA binding protein, physically interacts with the phage-encoded gene S protein (DNA polymerase) and gene 4 proteins (helicase and primase) and stimulates their activities. Genetic analysis ofT7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth. T7 phages that contain null mut...
متن کاملBacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages.
Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds o...
متن کاملPhage T4 homologous strand exchange: A DNA helicase, not the strand transferase, drives polar branch migration
Homologous strand exchange is a central step in general genetic recombination. A multiprotein complex composed of five purified bacteriophage T4 proteins (the products of the uvsX, uvsY, 32, 41, and 59 genes) that mediates strand exchange under physiologically relevant conditions has been reconstituted. One of these proteins, the product of the uvsY gene, is required for homologous pairing but ...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 86 1 شماره
صفحات -
تاریخ انتشار 1977